3 - 10 GHz Ultra-Wideband Low-Noise Amplifier Using Inductive-Series Peaking Technique with Cascode Common-Source Circuit
نویسندگان
چکیده
The objective of this paper is to investigate a ultra-wideband (UWB) low noise amplifier (LNA) by utilizing a two-stage cascade circuit schematic associated with inductive-series peaking technique, which can improve the bandwidth in the 3 10 GHz microwave monolithic integrated circuit (MMIC). The proposed UWB LNA amplifier was implemented with both co-planer waveguide (CPW) layout and 0.15 μm GaAs D-mode pHEMT technology. Based on those technologies, this proposed UWB LNA with a chip size of 1.5 mm × 1.4 mm, obtained a flatness gain 3 dB bandwidth of 4 8 GHz, the constant gain of 4 dB, noise figure lower than 5 dB, and the return loss better than –8.5 dB. Based on our experimental results, the low noise amplifier using the inductive-series peaking technique can obtain a wider bandwidth, low power consumption and high flatness of gain in the 3 10 GHz. Finally, the overall LNA characterization exhibits ultra-wide bandwidth and low noise characterization, which illustrates that the proposed UWB LNA has a compact size and favorable RF characteristics. This UWB LNA circuit demonstrated the high RF characterization and could provide for the low noise micro-wave circuit applications.
منابع مشابه
A New Ultra-Wideband Low Noise Amplifier With Continuous Gain Control
This paper presents a new variable gain low noise amplifier (VG-LNA) for ultra-wideband (UWB) applications. The proposed VG-LNA uses a common-source (CS) with a shunt-shunt active feedback as an input stage to realize input matching and partial noise cancelling. An output stage consists of a gain-boosted CS cascode and a gain control circuit that moves the high resonant frequency to higher freq...
متن کاملA High Gain and Forward Body Biastwo-stage Ultra-wideband Low Noise Amplifier with Inductive Feedback in 180 nm CMOS Process
This paper presents a two-stage low-noise ultra-wideband amplifier to obtain high and smooth gain in 180nm CMOS Technology. The proposed structure has two common source stages with inductive feedback. First stage is designed about 3GHz frequency and second stage is designed about 8GHz. In simulation, symmetric inductors of TSMC 0.18um CMOS technology in ADS software is used.Simulations results ...
متن کاملAnalysis and Design of High Gain, and Low Power CMOS Distributed Amplifier Utilizing a Novel Gain-cell Based on Combining Inductively Peaking and Regulated Cascode Concepts
In this study an ultra-broad band, low-power, and high-gain CMOS Distributed Amplifier (CMOS-DA) utilizing a new gain-cell based on the inductively peaking cascaded structure is presented. It is created bycascading of inductively coupled common-source (CS) stage and Regulated Cascode Configuration (RGC).The proposed three-stage DA is simulated in 0.13 μm CMOS process. It achieves flat and high ...
متن کاملA Compact 3.1–5 GHz RC Feedback Low-Noise Amplifier Employing a Gain Enhancement Technique
A low-noise amplifier (LNA) with main cascode amplifying stage utilizing a current-reuse transconductance-boosting technique is presented in this paper. This topology increases the effective transconductance, gm, of the input transistor and prevents a large voltage drop across the load resistor, thus reducing power consumption. The feedback topology made of source follower connected in series w...
متن کاملA 2.3-7 GHz CMOS High Gain LNA Using CS-CS Cascode with Coupling C
A fully integrated CMOS wideband Low Noise Amplifier (LNA) operating over 2.3–7 GHz is designed and fabricated using a 0.18 μm CMOS process. The proposed structure is a common sourcecommon source (CS-CS) cascode amplifier with a coupling capacitor. It realizes both low voltage drop at load resistor (Rload) and high gain over 2.3–7 GHz with simultaneous noise and input matching and low power con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Wireless Engineering and Technology
دوره 2 شماره
صفحات -
تاریخ انتشار 2011